
Page 1 of 38

Implementing an Oracle OCI APEX-based
Retrieval-Augmented Generation (RAG)

application with GPT-2

CREATED BY JERRY BLAIR AND CHATGPT

OCTOBER 19, 2024

This document contains ChatGPT-generated content as a base augmented with content from the

author (JERRY BLAIR). The content has been customized and reviewed by the author there are no

plagiarism implications. Thie above statement is intended to provide transparency regarding the use

of AI to avoid any ethical questions.

Page 2 of 38

Table of Contents

Implementing an Oracle OCI APEX-based Retrieval-Augmented Generation (RAG) application with GPT-

2 .. 4

Step 1: Creating the Oracle 23c AI OLTP Database on OCI LOE: 10 Minutes ... 4

Purpose: .. 4

Detailed Steps: .. 4

Why this step is important: ... 5

Step 2: Create a Pingable OCI Compute Instance ... 5

Purpose: .. 5

Detailed Steps: .. 5

Why SSH is required: ... 7

Why this step is important: ... 7

Step 3: Install the GPT-2 Model on the OCI Compute Instance .. 7

Step 4: Adding Retrieval Functionality for RAG (Retrieval-Augmented Generation) 8

Summary of Step 4: ... 12

Step 5: Fine-Tuning GPT-2 with Biblical Content, History, and Interpretations 12

Step 5 Summary: ... 17

Step 6: Creating an Oracle APEX 24.1.1 RAG Application ... 17

Step 6.4: Deploy the Application .. 20

Final Summary of Step 6: .. 21

Appendix A: OCI Configurations for Database, APEX, Users, & Buckets ... 22

Appendix B: A Note about Dynamic Groups ... 28

What is a Dynamic Group? ... 28

When is a Dynamic Group Required? ... 28

Why You Don’t Need a Dynamic Group with a Bucket-Level PAR .. 28

Use Case Comparison: .. 28

Conclusion ... 29

Appendix C: Pre-Authenticated Request (PAR) vs. Credentials ... 30

Pre-Authenticated Request (PAR) vs. Credentials .. 30

Key Characteristics of PAR: .. 30

When to Use a PAR: ... 30

Key Characteristics of OCI Credentials: ... 30

Page 3 of 38

When to Use OCI Credentials: .. 31

Comparison: PAR vs. Credentials .. 31

Why You Don’t Need OCI Credentials with a Bucket-Level PAR ... 32

When to Use OCI Credentials Instead of PAR ... 32

Conclusion ... 32

Appendix D: Step-by-Step Instructions for Creating an OLTP Database in Oracle OCI Free Tier 33

Appendix E: Why a Separate Compute Instance ... 36

1. Resource Limitations of ADB (Cloud Tier): .. 36

2. Customization and Flexibility for Machine Learning Libraries: ... 36

3. Separation of Concerns: .. 36

4. Scalability and Flexibility: .. 36

5. Efficient Resource Management and Cost Control: .. 37

6. GPUs and Machine Learning Acceleration: ... 37

7. Network and Storage Integration: .. 37

Summary: .. 37

Page 4 of 38

Implementing an Oracle OCI APEX-based Retrieval-Augmented

Generation (RAG) application with GPT-2
Here is a completely set of detailed instructions, starting from the beginning, to create an Oracle APEX

RAG application using GPT-2. I will include explanations for why each component and step is required

and what it does.

Step 1: Creating the Oracle 23c AI OLTP Database on OCI LOE: 10 Minutes

Purpose:

We need an OLTP (Online Transaction Processing) database as the backbone for storing data and

handling transactional requests in the application. Oracle 23c AI provides enhanced support for AI and

machine learning, making it ideal for integrating AI capabilities with GPT-2.

Detailed Steps:

Log in to OCI:

• Visit Oracle Cloud and log in using your credentials.

• Navigate to the Oracle Database section from the OCI dashboard.

• Select Autonomous Database from the options.

Create an Autonomous Transaction Processing (ATP) Database:

• Click Create Autonomous Database.

• Select Autonomous Transaction Processing (OLTP) from the database type options. OLTP is

designed for high-volume, short transactions, which will handle all the incoming requests,

data storage, and retrieval.

• Choose Oracle 23c AI as the database version. The AI capabilities in 23c will allow efficient

integration with the GPT-2 model and RAG functionalities.

• Database Name: Choose an appropriate name (e.g., RAG_Application_DB).

• Workload Type: Select Transaction Processing for optimal performance.

• Region & Availability Domain: Select the region where you want the database to be hosted

(choose the one closest to you for lower latency).

• CPU & Storage Configuration: Allocate CPUs and storage (start small if you’re just testing,

with 1-2 OCPUs and around 20 GB storage).

• Auto Scaling: Enable auto-scaling to allow the database to adjust resources based on usage

needs automatically.

Database Password Setup:

o Set up a password for the Admin account. This will be the main account used to access
and configure the database.

https://cloud.oracle.com/

Page 5 of 38

Create Database:

o Click Create to launch the database. It will take a few minutes for the database to be
provisioned.

Download the Wallet:

o Once the database is ready, download the Database Wallet. This wallet contains
credentials to securely connect to the database from various tools (like SQL Developer,
APEX, and others).

o Store the wallet securely on your local machine.

Why this step is important:

The OLTP database is the foundational data layer for the application. It will store transactional data,

such as user inputs, model outputs, and interaction logs. Oracle 23c AI’s capabilities allow for efficient

integration with machine learning and AI tools like GPT-2.

Step 2: Create a Pingable OCI Compute Instance

Purpose:

The OCI Compute instance will be used to run your GPT-2 model and manage the necessary retrieval

operations. This compute instance will interact with Object Storage, the database, and APEX to provide a

seamless flow of data between the model and your Oracle APEX application.

A separate OCI Compute Instance is recommended instead of using the Oracle Cloud Autonomous

Database (ADB) code editor for running and fine-tuning models like GPT-2. A detailed explanation for

why a separate compute instance is provided at Appendix E.

Detailed Steps:

Navigate to the OCI Compute Section:

• From the OCI dashboard, click on Compute > Instances.

• Click Create Instance.

Instance Configuration:

• Name the Instance: Choose a meaningful name (e.g., RAG_Model_Instance).

• Choose an Image: Select Oracle Linux 8 for the operating system. Oracle Linux is a stable and

secure platform, and version 8 is optimized for modern workloads like machine learning.

• Shape: Select VM.Standard.E3.Flex or a similar shape. Flex shapes allow you to customize the

number of OCPUs and memory. For GPT-2, start with around 2-4 OCPUs and 16 GB of memory

(this will be sufficient for testing).

Page 6 of 38

Configure Networking:

1. Choose a Virtual Cloud Network (VCN). If you don’t have one already, click Create New VCN.

o VCN CIDR Block: Specify a private IP range (e.g., 10.0.0.0/16).

o Subnet: Create a subnet (e.g., 10.0.1.0/24) that will host the compute instance.

o This VCN isolates your instance from the public internet while allowing it to securely

communicate with other OCI services.

Attach an Internet Gateway:

o Navigate to Networking > VCNs > Create Internet Gateway.
o This allows your instance to communicate with the outside world, which is necessary for

downloading the GPT-2 model and libraries.
o Add Route Rule:

▪ Destination CIDR: 0.0.0.0/0
▪ Target: Internet Gateway.

Configure Security Lists:

o The Security List defines the inbound/outbound traffic allowed for your instance.
o Inbound Rules:

▪ Allow SSH:
▪ Source CIDR: 0.0.0.0/0
▪ Protocol: TCP
▪ Port: 22 (for SSH)

▪ Allow ICMP for Ping:
▪ Protocol: ICMP
▪ Source CIDR: 0.0.0.0/0

o Outbound Rules:
▪ Allow all outbound traffic (e.g., HTTP requests for library downloads).

SSH Key Pair:

o Upload your public SSH key (typically id_rsa.pub) during the instance creation
process.

o The corresponding private key (id_rsa) will be used later to connect via SSH.

Create the Instance:

o Click Create to spin up the compute instance.
o It will take a few minutes for the instance to be provisioned.

Test Ping and SSH Access:

o Once the instance is running, verify connectivity by pinging its public IP:

bash

Copy code

Page 7 of 38

ping <instance-public-ip>

o Use SSH to connect:

bash

Copy code

ssh -i path_to_private_key opc@<instance-public-ip>

Why SSH is required:

Secure Shell (SSH) provides encrypted access to the server's command line, allowing you to install the

necessary tools (Python, TensorFlow, etc.) to run the GPT-2 model.

Why this step is important:

A compute instance is necessary for running the GPT-2 model, which is computationally intensive. It

needs to be externally accessible (SSH) for easy management but secured within a Virtual Cloud

Network (VCN) for privacy and security.

Step 3: Install the GPT-2 Model on the OCI Compute Instance

Purpose:

GPT-2 will be the model used to generate text outputs based on the input data. We need to set up

Python and TensorFlow, and then load GPT-2 for initial testing.

Detailed Steps:

1. Install Python and Dependencies:
o SSH into the compute instance and update the package manager:

bash

Copy code

sudo yum update -y

o Install Python 3 and pip:

bash

Copy code

sudo yum install python3

sudo yum install python3-pip

2. Install GPT-2 and TensorFlow:
o Install TensorFlow and transformers (Hugging Face) libraries:

bash

Copy code

Page 8 of 38

pip3 install tensorflow transformers

o Why TensorFlow? TensorFlow is a deep learning framework that allows you to
efficiently run the GPT-2 model.

o Why transformers library? The transformers library from Hugging Face provides an
easy-to-use interface for loading and using pre-trained models like GPT-2.

3. Load GPT-2 Model:

o Create a Python script (gpt2_model.py) to load the GPT-2 model:

python

Copy code

from transformers import GPT2LMHeadModel, GPT2Tokenizer

Load the GPT-2 model and tokenizer

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

Example generation

input_text = "In the beginning God created"

inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(inputs['input_ids'], max_length=100)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

o Run the script:

bash

Copy code

python3 gpt2_model.py

o This will output a text sequence generated by GPT-2.

Why this step is important:

Loading and testing the GPT-2 model ensures that the core component of the RAG system is

ready. GPT-2 will handle all text generation, making it essential to set up properly.

Step 4: Adding Retrieval Functionality for RAG (Retrieval-Augmented

Generation)

Purpose:

The retrieval functionality is critical for RAG, as it enhances the GPT-2 model by allowing it to

retrieve relevant documents or texts from a database or file storage system, such as Oracle Object

Storage. The GPT-2 model will use this retrieved information as additional context for

generating more accurate and contextually relevant responses.

We will set up OCI Object Storage for storing documents, create a connection between the

storage and the compute instance, and ensure that GPT-2 can retrieve the relevant documents

when needed.

Page 9 of 38

Step 4.1: Set Up OCI Object Storage for Document Storage

1. Navigate to Object Storage:
o In the OCI Console, go to Storage > Object Storage.
o Click Create Bucket to create a new storage bucket.

2. Configure the Object Storage Bucket:
o Bucket Name: Choose a meaningful name (e.g., RAGBibleDocuments).
o Storage Tier: Select Standard for frequent access to the data.
o Encryption: Use the default encryption settings (Object Storage data is encrypted by

default).
o Click Create to create the bucket.

3. Upload Documents to Object Storage:
o After creating the bucket, upload your documents (e.g., Bible text, interpretations,

historical commentaries) as individual files. You can do this manually by clicking Upload
Object in the bucket, or automate the process via the OCI CLI.

o Example Document Names:
▪ genesis.txt
▪ exodus.txt
▪ commentary_genesis.txt
▪ historical_context_exodus.txt

4. Enable Pre-Authenticated Request (PAR):
o If you prefer not to use credentials every time you access the Object Storage, you can

create a Pre-Authenticated Request (PAR).
▪ Go to Object Storage > Bucket > Pre-Authenticated Requests.
▪ Click Create PAR.
▪ Set the Object Name Prefix as / to cover all objects.
▪ Set expiration (based on how long you need the access).
▪ The PAR URL will be used for accessing files in Object Storage without providing

credentials every time.

Explanation:

• Why Object Storage? Object Storage in OCI provides secure, durable, and scalable storage for
unstructured data (like text files). This is where you will store all the documents you want GPT-2
to access and retrieve for enhanced generation.

• Why Pre-Authenticated Request (PAR)? PAR allows secure access to the bucket without
handling authentication programmatically, simplifying access from your application.

Step 4.2: Create a Python Script to Retrieve Documents from Object Storage

1. Install OCI SDK for Python on the Compute Instance:
o SSH into your compute instance and install the OCI SDK:

bash

Copy code

Page 10 of 38

pip3 install oci

2. Set Up OCI Configuration File:
o If you are using credentials (instead of a PAR), you need to set up an OCI config file to

authenticate your compute instance.
o In your home directory (~), create an .oci directory:

bash

Copy code

mkdir ~/.oci

vi ~/.oci/config

o Add the following configuration details to the config file:

ini

Copy code

[DEFAULT]

user=ocid1.user.oc1..your_user_ocid

fingerprint=your_fingerprint

key_file=/path/to/your/private_key.pem

tenancy=ocid1.tenancy.oc1..your_tenancy_ocid

region=us-ashburn-1

o You can find these values in the OCI console (for user, fingerprint, tenancy) under
Identity > Users.

3. Python Script to Access Object Storage:

o Now, write a Python script (retrieve_document.py) that retrieves documents

from your Object Storage bucket and feeds the content into the GPT-2 model.

python

Copy code

import oci

from transformers import GPT2LMHeadModel, GPT2Tokenizer

OCI Object Storage configuration

config = oci.config.from_file("~/.oci/config") # or use PAR for

easier access

object_storage_client =

oci.object_storage.ObjectStorageClient(config)

namespace = "your_namespace"

bucket_name = "RAGBibleDocuments"

Function to retrieve a document from Object Storage

def get_file_content(file_name):

 obj = object_storage_client.get_object(namespace,

bucket_name, file_name)

 return obj.data.content.decode('utf-8')

Load the GPT-2 model

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

Retrieve a specific document (e.g., Genesis)

Page 11 of 38

document_content = get_file_content("genesis.txt")

Tokenize and generate text using GPT-2

inputs = tokenizer(document_content, return_tensors="pt")

outputs = model.generate(inputs['input_ids'], max_length=150)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

4. Run the Python Script:
o Run the script on your compute instance:

bash

Copy code

python3 retrieve_document.py

5. Check Output:
o The script will retrieve the text from genesis.txt stored in Object Storage, pass it

through GPT-2, and output a generated response. The GPT-2 model now has access to
real-world data stored in Object Storage.

Explanation:

• Why retrieve documents from Object Storage? Since the GPT-2 model doesn’t have real-world
knowledge post-2019, retrieving contextually relevant documents (like biblical texts and
interpretations) helps enhance its generation capabilities. Object Storage serves as a large-scale,
external knowledge source for the model.

• Why OCI SDK? The SDK allows secure, programmatic interaction with Oracle services (like
Object Storage) from your compute instance.

Step 4.3: Connect Retrieval to Oracle APEX

1. Create a REST Data Source in APEX:
o In Oracle APEX, navigate to Shared Components > REST Data Sources.
o Click Create and choose the option for Oracle Cloud Infrastructure (OCI).
o Enter the base URL for your Object Storage’s REST API, or use the PAR URL for easy

access.
o Test the connection to ensure it’s set up correctly.

2. Create a Page for Retrieval in APEX:
o Create a new Interactive Report page in your APEX application.
o Use the REST Data Source you created to display a list of files (like Bible texts) stored in

Object Storage.
o Customize the report to allow users to select a document for retrieval.

3. Create a Button to Retrieve and Generate Text:
o Add a button to the interactive report that calls a PL/SQL dynamic action.
o The PL/SQL code can execute a server-side process that makes a REST call to your

Python script running on the compute instance to retrieve and process the document.

4. Example PL/SQL Code to Trigger Python Script:
o In the dynamic action, write the following PL/SQL code to make a REST call:

Page 12 of 38

plsql

Copy code

DECLARE

 l_http_request UTL_HTTP.req;

 l_http_response UTL_HTTP.resp;

 l_url VARCHAR2(4000) := 'http://<compute-instance-

ip>/retrieve_document.py';

 l_result CLOB;

BEGIN

 l_http_request := UTL_HTTP.begin_request(l_url);

 l_http_response := UTL_HTTP.get_response(l_http_request);

 UTL_HTTP.read_text(l_http_response, l_result);

 UTL_HTTP.end_response(l_http_response);

 -- Output the result

 htp.p(l_result);

END;

5. Test in APEX:
o Run your APEX application and navigate to the new page.
o Choose a document from the list and click the button to retrieve and process the

document using GPT-2.

Explanation:

• Why REST Data Source in APEX? The REST Data Source allows APEX to interact with external
systems (in this case, Object Storage) to retrieve data for the application.

• Why Dynamic Actions in APEX? Dynamic Actions are used to trigger server-side processes (like
retrieving and processing documents) based on user interaction, enhancing the application's
interactivity and functionality.

Summary of Step 4:

You have now successfully set up the retrieval functionality in your Oracle APEX RAG

application. The GPT-2 model can retrieve relevant documents from Oracle Object Storage and

use them as context for generating enhanced text. The integration between APEX, Object

Storage, and the compute instance running GPT-2 provides the full flow of data retrieval and

processing.

Step 5: Fine-Tuning GPT-2 with Biblical Content, History, and Interpretations

Purpose:

Fine-tuning GPT-2 involves taking the pre-trained model and adjusting it with domain-specific

data (in this case, the Bible, historical interpretations, and related documents). Fine-tuning helps

the model better understand the context of your application and generate more accurate

Page 13 of 38

responses. This step will provide detailed instructions on how to fine-tune GPT-2 using biblical

content stored in OCI Object Storage.

Step 5.1: Prepare Data for Fine-Tuning

1. Format the Data:
o Fine-tuning GPT-2 requires the data to be in a plain text format. Ensure that all biblical

content and related documents are saved as .txt files.
o Each file should contain a structured block of text, such as:

▪ genesis.txt (contains the entire Book of Genesis).
▪ interpretation_genesis.txt (contains a verse-by-verse interpretation).
▪ Other documents should follow a similar pattern for easy access and

organization.

2. Upload the Data to OCI Object Storage:
o Ensure that all files to be used for fine-tuning are uploaded to your Object Storage

bucket (created in Step 4). This makes them accessible for retrieval during the fine-
tuning process.

o Verify that the filenames are descriptive and easy to reference.

Explanation:

• Why plain text format? GPT-2 processes text data in a sequence. By providing the documents in
.txt format, you ensure that the model can read, tokenize, and fine-tune using the content
efficiently.

Step 5.2: Set Up Python Environment for Fine-Tuning

1. Install Required Packages:
o SSH into your compute instance and ensure all required packages for fine-tuning are

installed. If you haven’t already, install the following:

bash

Copy code

pip3 install transformers datasets torch

o transformers: Provides the GPT-2 model and tokenizer functionality.
o datasets: Helps in managing and loading large datasets efficiently for fine-tuning.
o torch: Core deep learning framework for running and fine-tuning the GPT-2 model.

2. Download the Fine-Tuning Script:
o Create a new Python script (fine_tune_gpt2.py) that will handle the fine-tuning

process.

Page 14 of 38

Explanation:

• Why datasets and torch libraries? These libraries optimize the process of handling large
datasets and make model fine-tuning computationally efficient.

Step 5.3: Implement the Fine-Tuning Script

1. Fine-Tuning Script:

o Below is a full Python script to fine-tune GPT-2 using your biblical content and

interpretations stored in OCI Object Storage.

python

Copy code

import oci

import torch

from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer,

TrainingArguments, TextDataset, DataCollatorForLanguageModeling

Load GPT-2 model and tokenizer

model = GPT2LMHeadModel.from_pretrained("gpt2")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

OCI Object Storage configuration

config = oci.config.from_file("~/.oci/config") # Ensure this

path matches your configuration

object_storage_client =

oci.object_storage.ObjectStorageClient(config)

namespace = "your_namespace"

bucket_name = "RAGBibleDocuments"

Function to retrieve a file from Object Storage and save it

locally for fine-tuning

def retrieve_and_save_file(file_name, save_path):

 obj = object_storage_client.get_object(namespace,

bucket_name, file_name)

 with open(save_path, "w") as file:

 file.write(obj.data.content.decode('utf-8'))

Retrieve and prepare text files for fine-tuning

retrieve_and_save_file("genesis.txt", "genesis.txt")

retrieve_and_save_file("interpretation_genesis.txt",

"interpretation_genesis.txt")

Load dataset for fine-tuning

def load_dataset(file_path, tokenizer, block_size=128):

 return TextDataset(

 tokenizer=tokenizer,

 file_path=file_path,

 block_size=block_size

)

Prepare data collator (this groups text into blocks for model

training)

Page 15 of 38

data_collator = DataCollatorForLanguageModeling(

 tokenizer=tokenizer,

 mlm=False, # GPT-2 doesn't use masked language modeling

)

Load datasets

train_dataset = load_dataset("genesis.txt", tokenizer)

interpretation_dataset =

load_dataset("interpretation_genesis.txt", tokenizer)

Training Arguments (adjust epochs, batch size, etc. based on

your instance capabilities)

training_args = TrainingArguments(

 output_dir="./fine_tuned_model",

 overwrite_output_dir=True,

 num_train_epochs=3, # You can increase the number

of epochs for better fine-tuning

 per_device_train_batch_size=4, # Adjust batch size based on

instance memory

 save_steps=10_000,

 save_total_limit=2,

)

Create Trainer instance

trainer = Trainer(

 model=model,

 args=training_args,

 data_collator=data_collator,

 train_dataset=train_dataset,

)

Start fine-tuning

print("Fine-tuning GPT-2 model...")

trainer.train()

Save the fine-tuned model

trainer.save_model("./fine_tuned_gpt2_bible")

tokenizer.save_pretrained("./fine_tuned_gpt2_bible")

print("Model fine-tuning complete!")

2. Explanation of Key Elements in the Script:
o retrieve_and_save_file: This function retrieves a file from OCI Object Storage and saves

it locally for fine-tuning.
o load_dataset: This function prepares the text data (Bible and interpretations) for model

training by tokenizing and organizing it into sequences.
o TrainingArguments: This object defines key hyperparameters, such as the number of

epochs, batch size, and where to save the fine-tuned model.
o Trainer: This is the core component of the transformers library that handles the fine-

tuning process.

3. Run the Fine-Tuning Script:
o To fine-tune GPT-2 with your biblical data, run the script on your compute instance:

bash

Page 16 of 38

Copy code

python3 fine_tune_gpt2.py

4. Monitor Training Progress:
o The training process may take several minutes to hours depending on your compute

instance and the size of your dataset.
o The script will periodically save checkpoints (every 10,000 steps), so you can monitor

the progress.

Explanation:

• Why fine-tune GPT-2? Fine-tuning the model allows you to specialize GPT-2 for your specific use
case (biblical texts and interpretations). This process enhances the model’s understanding and
ability to generate relevant responses based on the specific knowledge you've provided.

• Why use Trainer class? The Trainer class simplifies the training process, handling most of
the complexity related to batching, loss computation, and optimization.

Step 5.4: Store and Deploy the Fine-Tuned Model

1. Save the Fine-Tuned Model in OCI Object Storage:
o After fine-tuning is complete, save the model in Object Storage for future use:

python

Copy code

fine_tuned_model_path = "./fine_tuned_gpt2_bible"

oci.util.upload_file(

 object_storage_client,

 namespace,

 bucket_name,

 "fine_tuned_gpt2_bible.zip",

 fine_tuned_model_path

)

2. Deploy the Fine-Tuned Model:
o The fine-tuned model can now be reloaded and used for text generation in the same

way as the base GPT-2 model. In your application or scripts, simply load the fine-tuned
model:

python

Copy code

from transformers import GPT2LMHeadModel, GPT2Tokenizer

Load the fine-tuned model

model =

GPT2LMHeadModel.from_pretrained("./fine_tuned_gpt2_bible")

tokenizer =

GPT2Tokenizer.from_pretrained("./fine_tuned_gpt2_bible")

Example of generating text with fine-tuned model

Page 17 of 38

input_text = "In the beginning, God created the heaven and the

earth"

inputs = tokenizer(input_text, return_tensors="pt")

outputs = model.generate(inputs['input_ids'], max_length=150)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Explanation:

• Why save and reload the fine-tuned model? Once the model is fine-tuned, it can be deployed
for use in applications. Saving the model ensures it can be reused and distributed without
needing to re-train it from scratch.

Step 5 Summary:

By completing this step, you have fine-tuned GPT-2 using biblical content and related

interpretations, preparing it to generate text based on domain-specific knowledge. The fine-tuned

model can now be stored in OCI Object Storage for use in your Oracle APEX application.

Step 6: Creating an Oracle APEX 24.1.1 RAG Application

Purpose:

The goal of this step is to integrate the fine-tuned GPT-2 model into your Oracle APEX

application, enabling it to retrieve documents from Oracle Object Storage, generate text based on

those documents, and continuously fine-tune the model with additional data. We will create a

fully functional APEX app that provides an interface for uploading files, running the GPT-2

model, and interacting with the retrieval-augmented generation (RAG) functionality.

Step 6.1: Create a New Oracle APEX Application

1. Log into Oracle APEX:
o Use the browser to access the APEX instance running on your Oracle 23c AI database.
o Log in as an APEX admin or workspace developer.

2. Create a New APEX Application:
o From the APEX dashboard, click App Builder > Create.
o Select New Application and give the application a name (e.g., BibleRAGApp).
o Choose the Theme (Universal Theme is recommended).
o Select any default pages you might need, such as a Home page, but we’ll primarily focus

on custom functionality.

3. Create an Interactive Report for Document Management:
o Interactive Report: Go to Create Page > Report > Interactive Report.
o Set the page name as Document Management.
o This page will display the list of documents stored in OCI Object Storage, allowing users

to interact with the data.

Page 18 of 38

Explanation:

• Why an Interactive Report? Interactive reports in APEX allow users to view, search, and interact
with data in a tabular format. In this case, it will allow them to see all the documents uploaded
to Object Storage and select files to be used for text generation.

Step 6.2: Integrate OCI Object Storage with APEX

1. Create a REST Data Source to Access Object Storage:
o Go to Shared Components > REST Data Sources.
o Click Create > Select Oracle Cloud Infrastructure (OCI).
o Enter the base URL for your Object Storage bucket. This is either the PAR URL (if you set

up Pre-Authenticated Requests) or the REST API endpoint if you are using an API
key/OCI credentials.

o Example Base URL:
https://<namespace>.objectstorage.<region>.oraclecloud.com/n/<buc

ketname>/
o Enter any required authentication information (e.g., PAR URL or API keys).

2. Test the REST Data Source:
o After setting up the data source, click Test to ensure APEX can successfully retrieve the

list of files from the bucket.

3. Bind REST Data Source to the Interactive Report:
o Open the Document Management page and link it to the REST Data Source.
o Configure the columns to show the file name, file size, and other relevant metadata

(e.g., name, size).

4. Add a Button for File Retrieval:
o On the Document Management page, add a Button that will trigger the retrieval of the

selected file from Object Storage and pass it to the GPT-2 model for text generation.
o Example Button Name: Generate Text.

5. Create a PL/SQL Dynamic Action to Trigger Text Generation:

o Create a Dynamic Action triggered by the Generate Text button.

o In the PL/SQL Code section of the dynamic action, add the following:

plsql

Copy code

DECLARE

 l_http_request UTL_HTTP.req;

 l_http_response UTL_HTTP.resp;

 l_url VARCHAR2(4000);

 l_result CLOB;

BEGIN

 -- Prepare the URL to call the GPT-2 script on the compute

instance

 l_url := 'http://<compute-instance-

ip>:<port>/run_gpt2.py?file=' || :P1_FILE_NAME; -- Replace

:P1_FILE_NAME with the name of the file selected in the report.

 -- Make HTTP request to retrieve document and run GPT-2

 l_http_request := UTL_HTTP.begin_request(l_url);

Page 19 of 38

 l_http_response := UTL_HTTP.get_response(l_http_request);

 UTL_HTTP.read_text(l_http_response, l_result);

 UTL_HTTP.end_response(l_http_response);

 -- Output the result on a new page or display in a region

 :P1_RESULT := l_result;

END;

o Explanation:
▪ The PL/SQL code sends an HTTP request to your Python script running on the

compute instance, passing the selected file name as a parameter. The Python
script will retrieve the file from Object Storage, run the GPT-2 model, and return
the generated text to APEX.

6. Create a Text Area to Display the Generated Text:
o Create a Text Area region on the same page or a new page to display the result of the

GPT-2 generation.
o Set the Source of this text area to the variable :P1_RESULT, which will hold the

generated text returned by the PL/SQL block.

Explanation:

• Why REST Data Source? The REST Data Source allows APEX to dynamically interact with OCI
services (like Object Storage) without needing hard-coded file paths or manual uploads.

• Why PL/SQL Dynamic Action? PL/SQL is used to trigger the external process (calling the Python
GPT-2 script) while keeping the data flow within APEX’s framework.

Step 6.3: Create a File Upload Page to Continuously Add Data

1. Create a File Upload Page in APEX:
o Go to Create Page > File Upload.
o Name the page Upload New Documents and ensure it stores the uploaded files in your

OCI Object Storage bucket.

2. Link the File Upload Page to Object Storage:
o Under Shared Components, create a File Browser item.
o Set the File Browser to use the REST Data Source for your Object Storage bucket.
o This will allow users to upload files directly to the Object Storage bucket from APEX.

3. Process to Fine-Tune GPT-2 Automatically:
o When a new file is uploaded, trigger a PL/SQL Process to call your fine-tuning script on

the compute instance, ensuring the new data is added to the model.

plsql

Copy code

DECLARE

 l_http_request UTL_HTTP.req;

 l_http_response UTL_HTTP.resp;

 l_url VARCHAR2(4000);

 l_result CLOB;

BEGIN

Page 20 of 38

 -- Prepare the URL to trigger fine-tuning process

 l_url := 'http://<compute-instance-

ip>:<port>/fine_tune_gpt2.py?file=' || :P2_FILE_NAME; -- Replace

:P2_FILE_NAME with the name of the uploaded file.

 -- Make HTTP request to trigger fine-tuning

 l_http_request := UTL_HTTP.begin_request(l_url);

 l_http_response := UTL_HTTP.get_response(l_http_request);

 UTL_HTTP.read_text(l_http_response, l_result);

 UTL_HTTP.end_response(l_http_response);

 -- Output the result (confirmation that fine-tuning has started)

 htp.p(l_result);

END;

4. Display Fine-Tuning Status:
o Create a region on the upload page that shows the status of fine-tuning. This could

either be a confirmation message or a status bar that updates as the new file is
incorporated into the model.

Explanation:

• Why a File Upload Page? This allows continuous addition of new biblical content or
interpretations to the model. By automating the fine-tuning process, the model remains up-to-
date with the latest information.

• Why trigger fine-tuning dynamically? Automating this process ensures the model continues
learning and improving without requiring manual intervention.

Step 6.4: Deploy the Application

1. Deploy APEX Application:
o Once the application is built, deploy it within your Oracle APEX instance.
o You can set appropriate user roles (e.g., admin roles for those who can upload data and

general roles for those who just generate text).

2. Monitor Application Usage:
o Track usage metrics via APEX’s built-in reporting features.
o Ensure that the GPT-2 model is fine-tuned periodically with new content.

3. Test the Full Workflow:
o Test the application end-to-end by uploading new biblical content, retrieving it, and

generating text using the fine-tuned GPT-2 model. Ensure that the generated text
reflects the most recently uploaded documents.

Explanation:

• Why deploy on APEX? Oracle APEX provides a secure, scalable platform to build and deploy web
applications quickly, making it ideal for integrating your RAG model and fine-tuned GPT-2.

Page 21 of 38

• Why monitor application usage? Monitoring helps you understand how users interact with the
system and how well the model is performing, allowing for adjustments and improvements.

Final Summary of Step 6:

In this step, you have created a fully functional Oracle APEX application that integrates with

your fine-tuned GPT-2 model. The application allows users to retrieve documents from OCI

Object Storage, generate text using the model, upload new documents, and continuously fine-

tune the model. This workflow enables the model to remain dynamic, improving as more data is

added.

Page 22 of 38

Appendix A: OCI Configurations for Database, APEX, Users, & Buckets

COMPONENT ATTRIBUTE ATTRIBUTE VALUE

OCI Instance

 Tenancy jerryblairconsulting

 URL https://cloud.oracle.com/?region=us-chicago-1

 Console
Username

jerry.blair.consulting@gmail.com

 Password Jims#10

OLTP
Database

 Name Live-Labs-OlTP-Database-Instance

 OCID ocid1.autonomousdatabase.oc1.us-chicago-
1.anxxeljsnmapb7qaunsdhjmamgh7ag7kboszbbjrgktjdt7mshb
mv4tfzynq

 Compartment jerryblairconsulting (root)/LiveLabs

 DB Version 23ai

 Admin
Username

Admin

 Admin Password Jims#10

Group

 Domain Name LiveLabsDomain

 Group Name RAGAPPOSGroup

 OCID ocid1.group.oc1..aaaaaaaahmhrikyaidfqljbbyz2d5tu6y7zkrqk7
od2kiwty4ub3ahomxe6q

Group Policy

 Group Policy
Name

RAGAPPOSGroupPolicy

 OCID ocid1.policy.oc1..aaaaaaaawzovk2qolvrseecd2ar7i5gq2akts3m
edya4p6sfzunqzul6jb5a

 Compartment jerryblairconsulting (root)/LiveLabs

 Policy
Statements

allow group RAGAPPOSGroup to manage object-family in
compartment LiveLabs

User

 User Group RAGAPPOSGroup

 User Name RAGAPPGroupUser

 OCID ocid1.user.oc1..aaaaaaaazoiuaw3pd7ktcg6rhwzd5htsii2tfjstyq
qjnzsajlrrwlxotjma

 User Groups RAGAPPGroupUser
Domain Administrators

 First and Last
Name

Jerry Blair

 Recovery Email 436jtb@gmail.com

https://cloud.oracle.com/?region=us-chicago-1
mailto:jerry.blair.consulting@gmail.com
mailto:436jtb@gmail.com

Page 23 of 38

COMPONENT ATTRIBUTE ATTRIBUTE VALUE

 Private Key "-----BEGIN PRIVATE KEY-----
MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBA
QCQcNUYqUAh6SHE
jzj5wkL0Tj5wR9RgavpMeRmbChNy817qHPGDQPkURPRO84wj
PTKIsLy0zaRhWASz
S9SWsjH1oR0wysdXG9J4nCnkQoEKSpQT/+EBLhvwaTvqKGR8H
Pwuey7UcyHkrp4r
APSMNusd+D1ek6fxq8tKJ1qkhIY2/n9rz9ZqVz1T+a7onANGn42l
GVvNbJ7Ryv6D
gKvkdFg9Oph0OWiXviadKfZqd082L9xANWDK6LMkxkHOK11op
2oCCg/HMHs6KAkR
wILOkiKbW2mn5iJ5jo6VKjzL2j9rtDAjhqtKhfYPwePfAxJFHR7Qkj
Ehnu08jC8m
7Dooo679AgMBAAECggEAGFa+/b0VVrF9VG0K3YEnvZmKqWp
dJdMY8rZsQ2UHAnVy
frIaWzLhVdJJtZ0R9eUrxP89CR1mz9VgU2MZgzwrMXfw3oYo4
WuJg3PTFkjDjDul
aJpTLJr7r77Xzvz387cBooZ0zW1KHonzEo2CZ7cgVsg79Rod8Fnx
s0De4/6FzDHE
8iMdIIS1rLO6vv6OiZQ/XRMuXUNq+CF2pM9oYOOiEBNzAmj4z
Nn722MRZlVvaf5Y
09IRjmq9n2BHyBzcQO41jvc+38wrvSFdQdGIHFs0HX3NQ3Q7E
GyVcdrYsGdZEnyU
oHjpD2DLFVIuodAKY+0hWBNG/QFynBNADi4pCVv3eQKBgQDA
uW4lx3NTNjofvkfU
aETWAV5nqwAJQlVizLD0ZgaE90Fro4ksHw6MJ450WHPKggTA
mmcu9hlyBGzNZtQb
AJCOv9sqv1GJfsM0zw1SIBAo9rnUSkFEnz89gx8KtLuS32rpbaEH
T99WS+0/TY85
Lg2kYoraXNEWLlGY3DdOwk1yxQKBgQC/3ST6It+w5P8Gm+rYY
Xf02U7EQRNEF+hi
r9adXfxx/iaV9tz1z/DNcco/Qe2YLY74/MGUt+ybbuz3j86LF2yNo
YWgXyd++Gw7
g0tm7d4GKxAnWItQdXvhaXpYM2l+PaaYyhxKVcT8r4jo4mkC/1
JxjWJ+RPiAymQm
DFfgDsYu2QKBgQCdzbeRG5Ukh3xkTYvHMnFawdgpDm2DJ1t/
AJfMJlYkPcjFeCxz
giKJREJypZJ6OKfnhQYD/+Kp51GnhhEa4wV6vUGZ6Pm8mZ0A+
qCvpC1XPV6/ouV6
aOKBXYHnZEFKa8HAzNFTiWUX5iem87zYVws4lK+ZSPKzNM3/
WiG3TYXY+QKBgQC+
iaP7NT7oscICkjz7fnBenKB4jhfP+94wg2ejCH93xWoUbACrrUH7
BRJRF+wYwMXH
x1uHkdBL3DFA+XOo9i47yTinN1hF4/e4cn8jTP69KW71ZB2WXd
YU2WdCyGvvjtIv
0ieeOudR+hEBFjgrXdxGIJ67v0r6vAQRNRjfzkxKoQKBgEnddgZeS
q1pWdR/dnfk

Page 24 of 38

COMPONENT ATTRIBUTE ATTRIBUTE VALUE

25aNoyYNf5zgCKMP5Xkg5uyMXUkNI0WRvfEFmkCByjFKUn5D/
wCDK9QZXl7dWpU5
5phEiFqMcZZWfp0LaNmFDk3CvSbGP01O4aPCjoGC9AE3dZjdy
uJEvILeAv92d7EN
0z0b2SmSgynOaypm0Ty7u0Ev
-----END PRIVATE KEY-----

 Public Key "-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAkHDV
GKlAIekhxI84+cJC
9E4+cEfUYGr6THkZmwoTcvNe6hzxg0D5FET0TvOMIz0yiLC8tM
2kYVgEs0vUlrIx
9aEdMMrHVxvSeJwp5EKBCkqUE//hAS4b8Gk76ihkfBz8Lnsu1H
Mh5K6eKwD0jDbr
Hfg9XpOn8avLSidapISGNv5/a8/Walc9U/mu6JwDRp+NpRlbzW
ye0cr+g4Cr5HRY
PTqYdDlol74mnSn2andPNi/cQDVgyuizJMZBzitdaKdqAgoPxzB7
OigJEcCCzpIi
m1tpp+YieY6OlSo8y9o/a7QwI4arSoX2D8Hj3wMSRR0e0JIxIZ7t
PIwvJuw6KKOu
/QIDAQAB
-----END PUBLIC KEY-----

 Fingerprint 76:06:0b:2f:5e:7c:74:b5:e8:3f:2c:45:dd:98:5b:7c

 Tenancy ocid1.tenancy.oc1..aaaaaaaa6qhnofktohk6c3qnpuxb72nxtq4yi
meor5sna4wfjrxcq6uborea

 Region us-chicago-1

Bucket Bucket Name RAGAPPWebSiteBucket

 Namespace axtb5v7whbot

 Compartment LiveLabs

 OCID ocid1.bucket.oc1.us-chicago-
1.aaaaaaaa2krvuioq5dx627torxlsu3fzbtz3q2yujfi6ltg2ziqxlooqy
3za

 PAR Name

 PAR URL (old) https://objectstorage.us-chicago-1.oraclecloud.com/p/nG8e-
2S-G07e5RQHYi-
myPA_ZB7KbF5nd0Es5Sqjvmg8Z3sdOmqSgiLfYEwuE7Kw/n/axt
b5v7whbot/b/RAGAPPWebSiteBucket/o/

 PAR URL (new) https://axtb5v7whbot.objectstorage.us-chicago-
1.oci.customer-oci.com/p/nG8e-2S-G07e5RQHYi-
myPA_ZB7KbF5nd0Es5Sqjvmg8Z3sdOmqSgiLfYEwuE7Kw/n/axt
b5v7whbot/b/RAGAPPWebSiteBucket/o/

APEX Instance

https://axtb5v7whbot.objectstorage.us-chicago-1.oci.customer-oci.com/p/nG8e-2S-G07e5RQHYi-myPA_ZB7KbF5nd0Es5Sqjvmg8Z3sdOmqSgiLfYEwuE7Kw/n/axtb5v7whbot/b/RAGAPPWebSiteBucket/o/
https://axtb5v7whbot.objectstorage.us-chicago-1.oci.customer-oci.com/p/nG8e-2S-G07e5RQHYi-myPA_ZB7KbF5nd0Es5Sqjvmg8Z3sdOmqSgiLfYEwuE7Kw/n/axtb5v7whbot/b/RAGAPPWebSiteBucket/o/
https://axtb5v7whbot.objectstorage.us-chicago-1.oci.customer-oci.com/p/nG8e-2S-G07e5RQHYi-myPA_ZB7KbF5nd0Es5Sqjvmg8Z3sdOmqSgiLfYEwuE7Kw/n/axtb5v7whbot/b/RAGAPPWebSiteBucket/o/
https://axtb5v7whbot.objectstorage.us-chicago-1.oci.customer-oci.com/p/nG8e-2S-G07e5RQHYi-myPA_ZB7KbF5nd0Es5Sqjvmg8Z3sdOmqSgiLfYEwuE7Kw/n/axtb5v7whbot/b/RAGAPPWebSiteBucket/o/

Page 25 of 38

COMPONENT ATTRIBUTE ATTRIBUTE VALUE

 Database Name LiveLabsOLTPDatabase

 Database Type Transaction Processing

 Compartment jerryblairconsulting (root)/LiveLabs

 APEX Version 24.1.1

 ORDS Version 24.3.0.262.0924

 OCID ocid1.autonomousdatabase.oc1.us-chicago-
1.anxxeljsnmapb7qaunsdhjmamgh7ag7kboszbbjrgktjdt7mshb
mv4tfzynq

 Workspace APEX

 Default Schema WKSP_APEX

 Username APEX

 Password Jms#10

APEX
APPLICATION

Application Id 2024

 Application
Name

Exploring the Non-Technical through Technology

 Workspace APEX

 Username APEX

 Password Jms#10

OCI Compute
Instance

Instance Name GPT2ComputeInstance

 Availability
Domain

AD-1

 OCID ocid1.instance.oc1.us-chicago-
1.anxxeljtnmapb7qciyvkdxder3y7cwmrnsjyuk23dyhpp7zrws5u
gu35r73a

 Virtual Cloud
Network

GPT2ComputeInstance-vcn

 Public IP
Address

164.152.22.23

 Public IPv4
address

164.152.22.23

 Private IPv4
Address

10.0.0.101

 SSH Private Key -----BEGIN RSA PRIVATE KEY-----
MIIEogIBAAKCAQEAsENbc5JabCmIUSTJJl9IubICcqHOU+
4IqDAxKG9a6NUvZ92X
D7Wpd7g1kdPfvBT2AfaTq13lC9DD48W8FP1L4MzXH9H8
B+An8ToVcWRAFTg1PkaP
B8eEUcdNQUXdMsFt6JeDq827hpYZckqaqsHJmfzfcC8hTw
P6FzrCMO6+zVrtTbO7
0PdkgF0vglEPH3D68cvWy3tjim+X1lN2SpGQWPVGkWgS9
WH9GvNANrShjbvXrvLa

https://cloud.oracle.com/networking/vcns/ocid1.vcn.oc1.us-chicago-1.amaaaaaanmapb7qa7suoovq56u3rmn7o7axqc64nauc4lz75ntsfbiyudoua

Page 26 of 38

COMPONENT ATTRIBUTE ATTRIBUTE VALUE

TbMy7wMS+8mZ2E1MAM2MltlkkA+IZPIgZQzv1Jct5uEgJRj
zeShZZ2K0Vx+7s78W
h5zCxSb1glf2dUT75SY2mrTaUTenUKcwI7tjmwIDAQABAoI
BAA7E/h8/hrMkgccm
2XINLudceqcHVuYifng1XZEhT5FN98RwxW0sEDC3b0myY
r98VCbS9gm4eu5UBm4K
DhoGJXsHPwlsC33PcxlcABr5xwLgLFn1CJwixDwkAp2zEH
dlzONd+ssFGK8M2cIB
bVdcmJt+HGzmjhh0YVrb8hSulK9ZSQePSUa1fxLHTbcRco
mGSas+MVt5fWisuBrU
Qy/KSptURlh3qIazyv1mH+HlQpd+YVbSNlqlLv9l87NbjL6m
QjYaHx6vprX/gJam
jvOld7sAGbVtcSZ4cwVDcCD/nkPhR2ov0wtZM3CcKbZ7DO
+IUknpQ1e4IBNI1bCI
ukAkUPECgYEA2hjDeTAg2aDPVroTljLEoFTKzxwZOLtGPe
1GHsAzQUsn5Q/4MPvL
hPb11vn/gjk9eruMnaNavn37cXhM2WF1eNjFdUNN1z8sVhl
xeFyEichedC30qT7F
JLDS5rwR2v2Hy+9WE5Sh3bdAnTw9p3M5DTkhzOGzHkJP
qKpJJbv7kSsCgYEAzuVk
85apqPO4zhzd2t6Ce4AhhIrRtHyAswpvujov89dV0njKEIduE
PeU1b0J8Yoywd5H
fAxtTzyoSyPo5k7wNldzC2yuwMZUkPHTs2AJoMmLCs/sIm
7RmwD/0QyeSq1c86NY
5PdN1k8FBwNJoRj4bmSewG6bU1YScPBUco4K31ECgYB
AZ1mp+t1ohsVTjgVksD9C
PWfaeyiziRH4DY5MXGOGX4Q7b1jSVjjGXgtA3XhnYzHVg
XbHwkp0wE01N9oxw0bm
VdURiLt+2aflEQRiD6gP6/yAgGWkaOXcrN7KxjTbn0yvm1C
m3ZhjGc9Z30UxoqPx
VLK3htrXD6voWcjZ/MYQGwKBgCfx2AzDgNwSuhJpNlgkb5
LCiTYayyQKiZqHoEyX
IVz1rScmlPSeAR0bf8vIZJwSr3wIm0qS56PNtTxUoYmdofkL
5zVEdXTYlckqN1JB
b3pwjvy2agO325YOmlVVF1aZpAGR/v6t1IRU20agVt3YgVZ
m7NOAR1LOol7Vt6gq
TmURAoGANaODGV6QzKvfrKxivcWmZdXAkGq8lZyGoOX
UZQ+p3bcCDVqTlMQgvTmQ
k0d7pnB0S/tr63Gkau8O+454+f4woQvHFQxQ+o7AH5pmuk
G1FJ90VDLHC7tsHQgs
eRkUmsWTOprBr25l8k6ucxQivu/O0yBJLz0A1lMdw6Z7VH3
BDO4=
-----END RSA PRIVATE KEY-----

 SSH Public Key ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQCwQ1tzklpsKYh
RJMkmX0i5sgJyoc5T7gioMDEob1ro1S9n3ZcPtal3uDWR09
+8FPYB9pOrXeUL0MPjxbwU/UvgzNcf0fwH4CfxOhVxZEAV
ODU+Ro8Hx4RRx01BRd0ywW3ol4OrzbuGlhlySpqqwcmZ/
N9wLyFPA/oXOsIw7r7NWu1Ns7vQ92SAXS+CUQ8fcPrxy9
bLe2OKb5fWU3ZKkZBY9UaRaBL1Yf0a80A2tKGNu9eu8tp
NszLvAxL7yZnYTUwAzYyW2WSQD4hk8iBlDO/Uly3m4SAl

Page 27 of 38

COMPONENT ATTRIBUTE ATTRIBUTE VALUE

GPN5KFlnYrRXH7uzvxaHnMLFJvWCV/Z1RPvlJjaatNpRN6
dQpzAju2Ob ssh-key-2024-10-14

 FDA Laptop Path
to Keys

C:\GPT2ComputeInstance\SSHKeys

Page 28 of 38

Appendix B: A Note about Dynamic Groups

What is a Dynamic Group?

A Dynamic Group in OCI is a group that contains resources (such as compute instances,

databases, etc.) that match specific rules. These rules are based on the resource’s metadata and

allow OCI to dynamically assign resources to groups. This is especially useful when you want to

programmatically grant certain OCI resources (like an instance running an application) access to

OCI services (e.g., Object Storage).

When is a Dynamic Group Required?

A Dynamic Group is typically required when:

1. You want to programmatically manage access to OCI services, such as when an OCI

compute instance or an APEX application needs to interact with OCI Object Storage,

databases, or other resources without user intervention.

2. You do not want to rely on Pre-Authenticated Requests (PARs) for security reasons,

as PARs can be shared externally, and you need more granular control over what actions

can be performed.

3. You prefer to manage permissions using OCI policies and not rely on manually

creating PARs for each bucket or object.

With a Dynamic Group, you create policies to give permissions to the group, and the resources

in that group inherit those permissions, making it ideal for applications that need continuous,

automated access to resources (like Oracle APEX or custom OCI applications).

Why You Don’t Need a Dynamic Group with a Bucket-Level PAR

When you use a Pre-Authenticated Request (PAR) for the entire bucket:

• The PAR acts like a URL that anyone with the link can use (depending on the

permissions set when creating the PAR).

• You can perform operations such as uploading, downloading, or listing objects in the

bucket directly using the PAR URL.

• Since the PAR grants access, the APEX application or any other resource does not need

additional permissions or policies through a Dynamic Group. You just need the PAR

URL to interact with the bucket.

Use Case Comparison:

1. Using PAR:

o You created a PAR for the bucket, allowing users or applications to upload files

to the bucket using the provided PAR URL.

o Simpler: You don't need a Dynamic Group or policies.

Page 29 of 38

o Manual: You'll need to create or manage the PARs if permissions or access needs

to change.

2. Using a Dynamic Group:

o Ideal if your APEX application, compute instance, or other resources need

continuous access to OCI Object Storage without exposing a URL publicly.

o More secure: Access is tightly controlled via policies and is not dependent on

exposing URLs like PARs.

o Automated: Once the group and policies are set up, resources are granted access

dynamically.

Conclusion

Since you are using a bucket-level PAR, a Dynamic Group is not required in your case. The

PAR provides sufficient access for your APEX application to upload files to OCI Object Storage.

However, if your use case evolves to where you need more granular or programmatic control

without using PARs, Dynamic Groups would be a good option.

Page 30 of 38

Appendix C: Pre-Authenticated Request (PAR) vs. Credentials

Pre-Authenticated Request (PAR) vs. Credentials

1. Pre-Authenticated Request (PAR)

A PAR is a URL that provides temporary access to a resource (such as a bucket or object in OCI

Object Storage) without the need for credentials. It is often used for sharing or accessing

resources publicly or semi-privately when you don’t want to involve user authentication or

policies.

Key Characteristics of PAR:

• Bucket-Level PAR: If you create a PAR for the entire bucket, anyone with the PAR URL can
upload, download, or manage files in the bucket (based on the permissions set for the PAR). It
simplifies access since no further authentication is required beyond knowing the URL.

• Easy Sharing: You can share a PAR publicly or within a specific group without needing them to
authenticate.

• Expiration: PARs can be set to expire after a specific time, adding a layer of temporary access.
• Limited Scope: PARs are usually used for specific operations (like upload/download) and are

attached to a specific resource, such as a bucket or an object.
• No Authentication Needed: When using a bucket-level PAR, you only need the PAR URL to

access the bucket, so no credentials are needed in your APEX application.

When to Use a PAR:

• Simpler access for non-authenticated users or public applications.
• Sharing files with users who don’t have OCI credentials.
• Short-term access where access can be revoked by expiring the PAR or deleting it.

2. OCI Credentials

OCI credentials refer to a combination of API keys and security policies that grant

programmatic access to OCI resources. When you use credentials, you authenticate your access

with a combination of an API key (for programmatic access) and policies that govern what

actions the authenticated user or resource can perform.

Key Characteristics of OCI Credentials:

• Strong Authentication: OCI credentials (such as API keys, user OCIDs, or IAM roles) require
authentication for every request, ensuring that only authorized users or resources can access
the storage.

• Granular Control: You can specify exactly what actions a resource can perform (e.g., uploading
files, listing buckets, etc.) through policies tied to your OCI credentials.

• Programmatic Access: Ideal for continuous, automated processes, such as when your APEX
application, a server, or another OCI service needs to interact with OCI Object Storage without
user involvement.

Page 31 of 38

• Security: More secure in long-term usage as credentials are protected, and access can be tightly
controlled by OCI Identity and Access Management (IAM) policies.

When to Use OCI Credentials:

• For automated applications that need continuous, programmatic access to resources without
relying on a shared URL.

• Higher security requirements: Credentials and policies provide stronger security for enterprise-
level applications where fine-grained control over access is required.

• Granular control over access: Policies tied to credentials allow fine-tuned permissions based on
roles, actions, and resources.

Comparison: PAR vs. Credentials

Feature Pre-Authenticated Request (PAR) OCI Credentials

Access

Method
URL-based (no authentication needed)

Programmatic access with API keys and user

authentication

Granular

Control
Limited to bucket or object-level access

Fine-grained control over actions and access

policies

Usage Type
Public, shared access, or temporary

access
Private, continuous, and automated access

Expiration PARs can expire or be revoked manually
Credentials do not expire but can be revoked

or rotated

Complexity Easy to implement (just generate a URL)
Requires setting up API keys, policies, and

authentication flows

Security
Less secure (anyone with the URL can

access the resource)

More secure (access is controlled through

policies and credentials)

Application

Type

Ideal for public or semi-public sharing or

temporary access

Ideal for long-term, automated applications

or enterprise-level apps

Example Use

Case

Sharing a file or allowing uploads from a

website temporarily

Application needing continuous access to

storage for data processing

Page 32 of 38

Why You Don’t Need OCI Credentials with a Bucket-Level PAR

Since you’ve created a bucket-level PAR, the PAR URL already grants permission to access the

bucket for the specified actions (uploading files, downloading files, etc.). Your Oracle APEX

application can interact with the bucket using just the PAR URL.

In this case:

• You do not need to configure OCI credentials because the PAR already handles the access
control.

• No authentication is required from the APEX application, as access is granted via the PAR URL
itself.

• You only need to ensure that your APEX PL/SQL code correctly references the PAR URL for
uploading or managing files.

When to Use OCI Credentials Instead of PAR

If your use case evolves, and you want:

• More secure access, especially if the APEX app is expected to interact with OCI services without
exposing URLs publicly.

• Granular control over actions such as file management, directory listing, and bucket
administration.

• Long-term automated access where credentials would allow seamless interactions with Object
Storage without relying on expiring or manually-managed URLs.

In such scenarios, switching to OCI credentials and policies would be a better solution.

Conclusion

For your current setup, where you're using a bucket-level PAR, there is no need for OCI

credentials because the PAR already grants access to the bucket. This simplifies the interaction

between your Oracle APEX application and the OCI Object Storage bucket, making the

dynamic group and OCI credentials unnecessary for now.

However, if your application requires more security or flexibility in the future, OCI credentials

could be explored to replace the PAR-based access.

Page 33 of 38

Appendix D: Step-by-Step Instructions for Creating an OLTP Database in

Oracle OCI Free Tier
Prerequisites

• An active Oracle Cloud Free Tier account.
• Basic knowledge of navigating the OCI console.

Step 1: Log in to Oracle Cloud Console

1. Go to Oracle Cloud Console and log in using your credentials.

Step 2: Navigate to Autonomous Databases

1. From the OCI Dashboard, click the Menu icon (three horizontal lines) in the top-left corner.
2. Under Databases, click on Autonomous Database.

Step 3: Start Creating an Autonomous Database

1. Click on the Create Autonomous Database button in the top-right corner.

Step 4: Configure Autonomous Database Details

1. Compartment: Select your default compartment (it might be "root" unless you've

created a custom compartment).

2. Display Name: Enter a meaningful name for your database (e.g., FreeTierATPDB).

3. Database Name (DB Name): Choose a short, unique name (up to 14 characters) for your

database (e.g., ATPFree).

4. Workload Type: Select Transaction Processing. This is important for OLTP use cases

like real-time transactions, data processing, and quick queries.

Step 5: Select Infrastructure Type (Free Tier Defaults to Shared)

1. Infrastructure Type: This will default to Shared Infrastructure, which is required for the Free
Tier.

o The Free Tier only allows the use of shared infrastructure (you won't have to choose
here since it's the only option in Free Tier).

Step 6: Choose Free Tier Database Configuration

1. OCPU Count: Set the OCPUs to 1 OCPU, which is the maximum allowed in the Free

Tier.

2. Storage (TB): Set the storage to 20 GB, the maximum free allocation (you can choose

less if needed).
o The Free Tier allows up to 20 GB of storage for Autonomous Databases.

https://cloud.oracle.com/

Page 34 of 38

Step 7: Set Database Credentials

1. Admin Password: Set a password for the ADMIN user. This is required for accessing and
managing your database.

o The password must meet the following requirements:
▪ At least 12 characters.
▪ At least one uppercase letter.
▪ At least one lowercase letter.
▪ At least one numeric character.
▪ At least one special character.

Step 8: Configure Network Access

1. Access Type: Select Secure Access from Anywhere. This will make the database

accessible over the public internet (with appropriate authentication).

2. Virtual Cloud Network (VCN): Leave the VCN settings at their default for Free Tier.

OCI automatically manages the network setup.

Step 9: Backup and Recovery (Automatic in Free Tier)

1. Backups are managed automatically in the Free Tier, so no configuration is required. Your
database is backed up regularly by OCI.

Step 10: Advanced Options (Optional)

1. Auto Scaling: In the Free Tier, Auto Scaling is enabled automatically but limited to 1

OCPU.

2. Data Safe: Optionally, enable Oracle Data Safe for free if you want to add advanced

security features like data masking, auditing, etc.

3. Encryption: Data is always encrypted in Oracle Autonomous Databases, so no further

action is required here.

Step 11: License Type

1. License Type: Leave the license option set to License Included, as this is the only option
available in the Free Tier.

Step 12: Review and Create

1. Review your configurations and ensure all settings are correct.
2. Click Create Autonomous Database to start provisioning the database.

Step 13: Monitor the Database Creation

1. The provisioning process may take a few minutes. You can track the progress on the
Autonomous Database page.

Page 35 of 38

2. Once the status shows Available, your database is ready for use.

Step 14: Connect to the Database

1. Database Connection: To connect to your OLTP database, you will need the Database

Wallet file.
o From the Autonomous Database details page, click DB Connection.
o Click Download Wallet.
o Set a wallet password (make sure to remember it) and download the .zip file.

2. Configure SQL Developer or Other Tools:
o Extract the .zip wallet file.
o Open Oracle SQL Developer (or another SQL tool), and configure the connection using

the TNS (Transparent Network Substrate) strings provided in the wallet.
o Use the ADMIN user credentials and the password you set during database creation.

Free Tier Limitations to Keep in Mind

• Maximum 1 OCPU: You cannot increase the number of OCPUs beyond 1 in the Free Tier.
• Maximum 20 GB of storage: The Free Tier gives you a maximum of 20 GB of storage for

Autonomous Databases.
• Auto Scaling Limited: Auto scaling is limited to 1 OCPU in the Free Tier.
• Shared Infrastructure Only: The Free Tier only supports shared infrastructure for Autonomous

Databases.

Page 36 of 38

Appendix E: Why a Separate Compute Instance
A separate OCI Compute Instance is recommended instead of using the Oracle Cloud Autonomous

Database (ADB) code editor for running and fine-tuning models like GPT-2 for several important

reasons:

1. Resource Limitations of ADB (Cloud Tier):
• Cloud Tier Code Editor: The cloud tier’s built-in code editor is designed for lightweight,

database-centric tasks such as PL/SQL scripting, simple data manipulation, and Oracle-specific

database functions. It is not optimized for running large machine learning models like GPT-2,

which require significant memory, CPU, and GPU resources.

• Compute Power: Machine learning tasks, especially fine-tuning GPT-2, are resource-intensive.

They require large amounts of memory, processing power, and sometimes even GPUs for

efficient execution. The Oracle Cloud Autonomous Database does not offer the flexibility to

configure high-performance computing resources (like GPUs) for running models efficiently. A

dedicated Compute Instance allows you to scale up resources based on your needs.

2. Customization and Flexibility for Machine Learning Libraries:
• Compute Instance: A compute instance gives you full control over the environment. You can

install any custom libraries, machine learning frameworks (such as TensorFlow, PyTorch,

Hugging Face Transformers), and specific dependencies that are necessary for running advanced

AI models.

• Cloud Tier: The ADB cloud tier environment is optimized for database operations and may not

allow the installation of external machine learning libraries or frameworks. It is not designed to

support the full ecosystem required for deep learning models (e.g., complex Python

dependencies, TensorFlow, etc.).

3. Separation of Concerns:
• Compute Instance: By separating the machine learning model from the database environment,

you achieve a separation of concerns. The compute instance handles the AI-related tasks

(loading models, generating text, fine-tuning), while the Oracle APEX and Database focus on

data management, front-end applications, and user interaction. This separation improves the

scalability, reliability, and performance of both components.

• Cloud Tier Code Editor: Loading and running the model in the code editor would unnecessarily

burden the database with tasks it isn’t optimized to handle, leading to performance issues, slow

response times, and possibly exceeding the resource limits of the ADB cloud tier.

4. Scalability and Flexibility:
• Compute Instance: With a compute instance, you can easily scale resources up or down based

on demand. For instance, if the model requires more memory or processing power, you can
adjust the number of OCPUs, memory, or even switch to a GPU-enabled instance. This flexibility
is critical for fine-tuning large models or handling multiple users concurrently.

• Cloud Tier: The cloud tier is more rigid in terms of scalability. You cannot dynamically adjust
computing resources, which is necessary for handling the computational load of GPT-2 model
training or fine-tuning.

Page 37 of 38

5. Efficient Resource Management and Cost Control:
• Compute Instance: You can optimize costs by choosing the right shape (CPU/memory) and only

scaling up when necessary (e.g., during fine-tuning). You can stop and start the instance as

needed, saving costs when it's not in use. Compute instances also allow you to pick shapes like

VM.Standard.E3.Flex (customized CPU/memory configurations), which are cost-effective for

running GPT-2 models.

• Cloud Tier: While the Oracle ADB cloud tier offers a free tier, its resource limits make it

unsuitable for intensive machine learning tasks, and upgrading to a higher tier with more

resources can become expensive. Additionally, overloading the cloud tier with machine learning

tasks can affect database performance, leading to higher costs and inefficient resource usage.

6. GPUs and Machine Learning Acceleration:
• Compute Instance: For machine learning models like GPT-2, access to GPU instances can

significantly speed up training and fine-tuning tasks. OCI allows you to provision GPU-

accelerated compute instances (e.g., using NVIDIA GPUs), which are not available in the ADB

cloud tier. GPUs are essential for complex model training and fine-tuning due to their ability to

handle parallel processing efficiently.

• Cloud Tier: The cloud tier does not support GPUs or the high-performance computing

capabilities necessary for deep learning workloads.

7. Network and Storage Integration:
• Compute Instance: When using a compute instance, you can configure network rules, storage

options, and integrate easily with OCI Object Storage for retrieving or storing large datasets. The

compute instance can handle heavy data processing tasks independently, without affecting the

primary database’s performance.

• Cloud Tier: The ADB environment is tightly coupled with the database’s own performance.

Running heavy workloads, such as retrieving large datasets or processing multiple documents,

may affect the database performance and user experience within the APEX application.

Summary:
Using a dedicated compute instance for running and fine-tuning GPT-2 is crucial because it:

• Provides the required computational resources (CPU, memory, and GPU) for handling large

machine learning models.

• Offers flexibility for installing custom machine learning frameworks and managing

dependencies.

• Improves scalability and performance by separating AI processing from database management.

• Allows better resource management, which helps control costs while ensuring optimal

performance.

In contrast, the Oracle Cloud Autonomous Database code editor is better suited for lightweight,

database-centric operations and is not equipped to handle the computational demands of machine

learning workloads like GPT-2.

Page 38 of 38

